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Abstract
In this work we investigate how the description of several properties of helium
atoms in the condensed phases are affected by the three-body terms of a
very accurate inter-atomic potential. We introduce two phenomenological
parameters in the three-body part of the inter-atomic potential in order to
describe properly the equations of state of the solid and liquid phases. The
calculations were performed using the multi-weight extension to the diffusion
Monte Carlo method which allows accurate calculations of small energy
differences in a significant way. The results show how the equations of
state for both the liquid and solid phases and properties like the isothermal
compressibility, the equilibrium, melting and freezing densities are affected by
three-body interactions.

1. Introduction

The properties of helium systems at low temperature have attracted continuous experimental
and theoretical interest. Several reviews have scrutinized the subject; for a recent one, see [1].
A basic aspect of the theoretical investigation of these systems is the inter-atomic potential used
in the calculations. Recently [2] we put together a potential that is able to describe with great
accuracy the equations of state for both the liquid and solid phases. It has two- and three-body
components. The two-body part is the retarded potential published by Janzen and Aziz [3]. The
three-body interaction includes the Axilrod–Teller–Muto (ATM) [4, 5] triple–dipole term and
an exchange part as proposed by Cohen and Murrell [6].

In this work we investigate how the three-body interactions of our inter-atomic potential
affect the description of several properties of the liquid and solid phases of 4He atoms. We
want to gain a better understanding of the role played by the individual contributions of the
three-body interactions. This is not only important by itself but also, for instance, as a means of
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enhancing the physical content of the analytical functional forms that one might use to fit their
contributions.

Some of the quantities in which we are interested are computed by taking energy
differences that have quite similar magnitudes. The straightforward use of quantum Monte
Carlo methods to compute such small energy differences might not be possible. The results of
independent runs and their associated statistical uncertainties might render such calculations
meaningless. To avoid such difficulties we use the multi-weight (MW) extension to the
diffusion Monte Carlo (DMC) method [7, 8], which allows the calculation of small energy
differences with great accuracy.

This work is organized as follows. In the next section we show the inter-atomic
potential [2] used in the calculations. In section 3 we give an overview of how to use the
MW extension of the DMC method to compute the three-body contributions to the total energy
of a system of 4He atoms. Details of the numerical simulations are given in section 4. In
the subsequent section we present our results and show how the three-body contributions of
the inter-atomic potential affect the properties of the system. Section 6 contains some final
comments. In the appendices we have reproduced from the literature the parameters of the
two-body term and of the exchange three-body part of the potential used in this work.

2. Theory

The careful description of a system of helium atoms in condensed phases requires a
Hamiltonian,

HV = − h̄2

2m

N∑

i=1

∇2
ri

+ V (R), (1)

where the inter-atomic potential V (R) [2] includes two- and three-body terms, and R =
{r1, r2, . . . , rN } stands for the N atoms’ coordinates considered in the calculations. Its two-
body part consists of the ab initio potential proposed by Korona et al [9], where retardation
effects were included [3] through a function φR in the dipole–dipole term

V2(r) = A exp(−αr + βr 2) − f6(r, δ)
C6φR(r)

r 6
−

8∑

n=4

f2n(r, δ)
C2n

r 2n
, (2)

where A, α, β, δ, C2n are parameters that have values reproduced in table A.1 of appendix A
and the f2n are damping functions of the Tang–Toennies form [10]:

fi (r, χ) = 1 −
(

i∑

k=0

(χr)k/k!
)

exp(−χr). (3)

The retardation function φR (see tables A.2 and A.3 in appendix A) smoothly changes the
behaviour of the dipole–dipole dispersion term in the intermediate- and long-range region,
slightly reducing the potential width.

The dispersion three-body contribution to the inter-atomic potential comes from the multi-
polar expansion of the third-order long-range polarization interaction of spherically symmetric
atoms. We use a damped triple–dipole ddd interaction term

Vddd(ri , r j , rk) = C9

r 2
i j r

2
ikr 2

jk + 3(ri j · rik)(r j i · r jk)(rki · rk j )

r 5
i j r

5
ikr 5

jk

× f3(ri j , δd) f3(rik, δd) f3(r jk, δd), (4)

where the ri j = |ri j | are the sides of the triangles formed by the atoms; C9 = 1.47 (au) is
the non-additive coefficient. By its very nature, the ATM interaction is not valid at short-range
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distances. At this distance range, a reasonable description of the system requires this interaction
to be damped. We have imposed this damping by a product of three Tang–Toennies f3(r, δd)

functions with δd = 20.352 nm−1. The potential Vddd is positive for equilateral triangles and
attractive for linear arrangements of atoms. The origin of this term is not difficult to understand.
The dispersion energy due to dipole–dipole interaction arises from fluctuations in their atomic
electronic cloud. A three-body component of this interaction will appear because, when an
atom is put together with a pair, each dipole moment of this pair will respond to the dipole
moment of the third atom.

For simplicity, we follow [11] and assume that the many-body dipole-interaction terms of
fourth- and higher-order perturbation theory are cancelled by those of higher multipole third-
order terms ddq , qqd , ddo and qqq; q stands for quadrupole and o for octupole. On the other
hand, the exchange correlation effects are supposed to be of importance, since for the helium
trimers the non-additivity is probably dominated by the exchange forces.

In fact, the exchange interaction is needed in the inter-atomic potential and therefore we
have used the analytical representation of Cohen and Murrell [6]:

VJ (ri , r j , rk) = A[c0 + c1 Q1(i jk) + c2 Q2
1(i jk)

+ (c3 + c4 Q1(i jk) + c5 Q2
1(i jk))(Q2

2(i jk) + Q2
3(i jk))

+ (c6 + c7 Q1(i jk) + c8 Q2
1(i jk))(Q3

3(i jk) − 3Q3(i jk)Q2
2(i jk))

+ (c9 + c10 Q1(i jk) + c11 Q2
1(i jk))(Q2

2(i jk) + Q2
3(i jk))

2

+ (c12 + c13 Q1(i jk) + c14 Q2
1(i jk))(Q2

2(i jk) + Q2
3(i jk))

× (Q3
3(i jk) − 3Q3(i jk) Q2

2(i jk))] exp(−αQ1(i jk)) (5)

where we have introduced a fitted amplitude A that we have determined to be equal to 4.0. The
Q1, Q2 and Q3 are symmetry-adapted coordinates that depend on the triangle sides ri j and are
given by

Q1(i jk) = 1√
3
(ri j + rik + r jk),

Q2(i jk) = 1√
2
(rik − r jk),

Q3(i jk) = 1√
6
(2ri j − rik − r jk).

(6)

The values of the parameters α and {ci | i = 1, . . . , 14} determined by Cohen and Murrell are
reproduced in table B.1 in appendix B.

The only two parameters that we have introduced [2] in the inter-atomic potential V (R) is
the amplitude A of (5) and the damping parameter δd of the Tang–Toennies function f3(r, δd)

of (3) used in the ATM term (4). These parameters were obtained through iterative least-
squares fits. Several hundred configurations of independent runs with 108 particles at different
densities of the liquid and solid phases were employed to fit the energies to the experimental
values. For a matter of technical convenience, the fits were done by imposing a face-centred
cubic (fcc) crystalline structure in the simulation of the solid phase. These calculations were
performed with the inter-atomic potential V (R). About 3000 configurations were used each
time an iteration was performed. Once values of the amplitude A and the repulsive short-range
δd were obtained, fresh configurations were generated for the next interaction. We continued
this procedure until the energies converged.
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3. The method

In order to learn how the three-body interactions Vddd and VJ affect the description of systems
of helium atoms, we have computed their contribution to the total energy. In our calculations
we have applied the MW extension of the DMC method [7] to compute simultaneously the
binding energies per atom for the Hamiltonians: H2, where only the two-body potential of (2)
is used; H2ddd determined by the potential V2ddd = V2 + Vddd , the sum of V2 and the triple–
dipole interaction Vddd of (4); and HV , which takes into account the full inter-atomic potential
of (1) given by V = V2 + Vddd + VJ . This also includes the exchange term of (5). The
contributions of Vddd and VJ were computed by subtracting the appropriate correlated energies
obtained with these Hamiltonians. In the following we give an overview of how the calculations
are implemented.

In the MWDMC method, to each walker we associate more than one weight—one for
each Hamiltonian of interest—and slightly generalize the usual DMC branching rules. The
standard DMC method is accomplished by considering the following steps: diffusion, weight
update and branching. As in the DMC method, in its MW extension the diffusion step depends
only on a guiding function �G , which helps in the exploration of the important regions of the
configuration space. The diffusion of a given set of walkers does not depend on any interacting
potential of the system. So this step is performed exactly in the same way as in the standard
DMC method. The simulations start with a given initial set of configurations or walkers with
all weights set to one.

The diffusion of a walker from configuration R′ to a new one R is performed by sampling

Gd(R, R′) = (4π D	τ)−
3N
2 exp

[
− (R − R′ − D	τvD(R′))2

4D	τ

]
, (7)

where vD = 2∇ ln �G is the drift force, D = h̄2/2m is the diffusion coefficient, and 	τ is
the time step. To make our results as unbiased as possible, we have considered a time step like
those of [12] and [13]. We have also imposed detailed balance condition.

After the diffusion, the weights w′(k) of a walker are updated according to

w(k) = w′(k)G(k)
b (R, R′), (8)

where the G(k)
b (R, R′) are given by

G(k)
b (R, R′) = exp

{
−

(
	τ

2

)
[E (k)

L (R) + E (k)
L (R′)] + 	τ E (k)

T

}
. (9)

The E (k)
T are parameters that are changed during the simulation to keep w(k) ≈ 1 and the

E (k)

L = Hk�G/�G are local energies that depend on the Hamiltonians Hk mentioned at the
begin of this section, k ≡ {2, 2ddd, V }.

So far the only difference that we have with the standard DMC method is that, instead
of one weight, we have three weights attached to each walker. Moreover, each one of these
weights is updated as usual in the DMC method. However, for efficiency, the number of walkers
must fluctuate according to branching rules. These need to be slightly generalized, because we
have more than one weight per walker. Let us consider the three specific situations that can
emerge for a given walker: (a) all weights w(k) are greater than 2—in this case, the walker is
duplicated and each of the copies will carry half of the initial weights; (b) at least one of the
weights of the walker is in the range of a threshold value (which we have chosen to be 0.3)
and 2—in this situation, it is kept with all its updated weights; (c) all weights are lower than
the threshold value—in the last case, the walker will eventually be combined with another one
in similar conditions if it is found in the present generation. For definiteness, let us suppose
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that walkers i and j have all theirs weights below the threshold value. We compute the ratios
r (k) = w

(k)
i /(w

(k)
i + w

(k)
j ) and assign the weight w

(k)
i + w

(k)
j to configuration i with probability

r (k). If the value w
(k)

i + w
(k)

j is not assigned to configuration i , it is ascribed to configuration j .
Unless all the weights of a walker are zero, both walkers need to be kept. This is an undesirable
situation, since walkers with one or more weights equal to zero erodes the correlation that we
want to construct. Fortunately, the number of such walkers can be minimized with an adequate
choice of the threshold value for the recombination of walkers. We have verified that, for
a threshold value of 0.3, the number of walkers with one or more weights equal to zero is
not greater than 5% of the total number of walkers. After the diffusion, weight update and
branching, a so-called generation has been complete and the new set of walkers are ready for
another diffusion step.

Periodically energy estimates of the system as weighted averages over the walkers using
their corresponding local energies are recorded

Ek(Ri) =
∑

i w(k)(Ri)E (k)

L (Ri )∑
i w(k)(Ri)

. (10)

The energy averages calculated in (10) with the different potentials are correlated, since
they were computed using basically a single set of configurations. The contribution to the
binding energy from the damped ATM potential Vddd can be computed without the need of
extrapolation. It is a simple calculation performed by the subtraction

Eddd (Ri) = E2ddd(Ri ) − E2(Ri). (11)

The analogous contribution from the exchange term VJ is computed by

EJ (Ri) = EV (Ri ) − E2ddd(Ri ). (12)

As usual, several generations have to be performed before we start accumulating the quantities
of interest. After the system has been equilibrated, block averages of all the quantities of
interest are formed and their estimated errors are computed.

In summary, the MW extension to the DMC method allows the determination of small
energy differences like those of the three-body contributions to the total energy because they
are computed using quantities obtained in a correlated form. Of course, the estimated values of
EV , E2ddd and E2 within statistical uncertainties do not differ from values computed with the
standard DMC method.

4. The simulations

In the liquid phase we chose a guiding function of the Jastrow form

�J (R) =
∏

i< j

f (ri j), (13)

where f (ri j) = exp(−u(ri j)/2) correlates a pair of particles with a pseudopotential of the
McMillan form, u(ri j) = (b/|ri − rj|)5; b is a parameter.

For the solid phase, a guiding function of the Nosanov–Jastrow form �N J (R) =
�N (R)�J (R) was used:

�N (R) =
∏

i

exp

[
−C

2
(ri − li)2

]
, (14)

where �N represents a mean-field term that explicitly localizes the particles around given lattice
sites li . Explicit three-body correlation [14] could be included in the guiding function of both
phases, with the advantages of faster convergence and small fluctuations, at a price of more
evolved programming.

5
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Although helium solidifies in a hexagonal close packed (hcp) structure, an fcc lattice
was imposed in the simulations of the solid phase for computational convenience. The
small energy differences [15] due to this approximation is within our statistical uncertainties
in the calculations of the energies associated with the Hamiltonians Hk . All the results
of the simulations were performed with 108 atoms in a cubic box with periodic boundary
conditions. The pseudopotential of the correlation factor in (13) is slightly modified, u(r) →
u(r)+ u(L − r)− 2u(L/2), so that it goes smoothly to zero at half of the simulation cell, L/2.
The size of the simulation box varies at each calculation and is computed by taking into account
the number of particles (N) and density (ρ) considered in the simulation, i.e. L = 3

√
N/ρ . The

minimum image convention was used to calculate distances between a pair of particles in the
simulation box. In the calculations of the three-body interactions we have slightly modified
the minimum image convention [7] in order to compute the correct size of the third side of the
triangles. At each density the averages of the quantities of interest were formed with about 500
estimates, each obtained after four time steps. Plots of energy versus time steps were used to
assure that we have converged results. In all runs, the initial set of configurations are sampled
from |�{J,N J }|2 using the Metropolis algorithm.

In principle, an extrapolation to 	τ → 0 has to be performed to compute the true
quantities obtained in a calculation using the DMC method or in its MW extension. However,
in our simulations we have chosen a time-step value such that more than 99% of the attempted
moves are accepted. We have verified that, at this acceptance ratio, the extrapolation of
the energies to 	τ → 0 agrees within statistical uncertainties with the values obtained
directly from the simulation. Therefore we have kept such an acceptance ratio and disregard
extrapolations.

We have considered tail corrections to compute the contributions of the two-body and Vddd

potentials. The correction associated with the two-body potential at distances larger than half
the side of the simulation cell was computed using the sum of one to three damped sinusoidal
functions fitted to the computed pair radial distribution function g2(r). For the three-body part
of the inter-atomic potential, the tail correction is computed by

T3 = 4π2 Nρ2

3

∫ ∞

0

∫ ∞

L/2

∫ 1

−1
g3(r12, r13, r23)Vddd(r12, r13, r23)

× r 2
12r 2

13 dx dr12 dr13, (15)

where ρ is the density of the system, r 2
23 = r 2

12 + r 2
13 − 2r12r13x , and x = cos θ , where θ is the

angle between r12 and r13. The Kirkwood superposition approximation, g3(r12, r13, r23) ≈
g2(r12)g2(r13)g2(r23), was employed in (15). As in the calculation of the two-body tail
correction, at distances large than half the side of the simulation box we have considered
damped sinusoidal functions fitted to the pair correlation function g2(r). It is not difficult to
realize by considering the limits of integration in (15) that all triangles outside the simulation
cell were considered. No tail correction was performed for the exchange part of the inter-atomic
potential due to the smallness of its contribution.

In the integration of the two- and three-body tail corrections, we have used Romberg’s
integration scheme with Richardson-style extrapolation. Since the mixed estimator,
〈�G |O|�〉, for the expectation value of an operator O only gives the exact result when
it commutes with the Hamiltonian, the pair correlation function g2(r) was calculated using
the linear extrapolation approximation 〈�|O|�〉 ≈ 2〈�G |O|�〉 − 〈�G |O|�G〉, where
〈�G |O|�G〉 is the variational expectation value and |�〉 is the exact ground state. We have
estimated that for a system of 108 atoms in the liquid phase the tail correction due to the ATM
three-body potential gives an additional contribution of about 6% to its computed value. In the
solid phase, this value increases to approximately 8%. The contributions of the two- and three-
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Table 1. Total energies per atom in units of K obtained in calculations using the V , V2ddd and V2

potentials at the given densities. In the last column we show experimental data from [17] and [20]
or values obtained from the Exp-EOS.

ρ (nm−3) EV E2ddd E2 Exp.

Liquid

21.86 −7.171 ± 0.008 −7.195 ± 0.008 −7.316 ± 0.008 −7.170a

23.20 −7.120 ± 0.008 −7.148 ± 0.008 −7.288 ± 0.008 −7.114
24.01 −7.020 ± 0.008 −7.050 ± 0.008 −7.202 ± 0.008 −7.027b

24.83 −6.897 ± 0.009 −6.929 ± 0.009 −7.096 ± 0.009 −6.893
25.36 −6.778 ± 0.009 −6.812 ± 0.009 −6.987 ± 0.009 −6.782
26.23 −6.544 ± 0.009 −6.579 ± 0.009 −6.770 ± 0.009 —

Solid

29.34 −5.780 ± 0.009 −5.780 ± 0.009 −6.035 ± 0.009 −5.789c

30.11 −5.550 ± 0.009 −5.548 ± 0.009 −5.821 ± 0.009 −5.56
30.88 −5.277 ± 0.009 −5.271 ± 0.009 −5.562 ± 0.009 −5.28
31.50 −5.016 ± 0.009 −5.005 ± 0.009 −5.310 ± 0.009 −5.021c

32.55 −4.509 ± 0.009 −4.491 ± 0.009 −4.822 ± 0.009 −4.50
33.54 −3.938 ± 0.009 −3.909 ± 0.009 −4.265 ± 0.009 −3.919c

34.41 −3.312 ± 0.009 −3.271 ± 0.009 −3.652 ± 0.009 −3.32
35.27 −2.690 ± 0.009 −2.640 ± 0.009 −3.043 ± 0.009 −2.681c

a Experimental value at 21.83 nm−3.
b Interpolated value from [17].
c Interpolated value from [20].

body tail corrections, for the liquid and solid phases, were taken into account in the results
presented in section 5.

5. Results

In the next two subsections we give details of the equations of state for both the liquid and solid
phases of systems of 4He atoms obtained with all the Hamiltonians that we have considered
in this work. These equations are importance by themselves, and also because some of the
properties that we want to analyse depend on their analytical representations. Such analysis is
made in the two last subsections.

Energies per atom in each phase as a function of the density ρ were fitted to the expression

E(ρ) = E0 + A

(
ρ − ρ0

ρ0

)2

+ B

(
ρ − ρ0

ρ0

)3

. (16)

This depends on four parameters, E0, ρ0, A and B . In the liquid phase the first two parameters
have a physical signification on their own. The first one, E0, represents the binding energy at
the equilibrium density, and ρ0 is the equilibrium density itself.

5.1. Equation of state for the liquid phase

The liquid phase was investigated by considering systems of helium atoms at six densities
ranging from 21.86 to 26.23 nm−3. This range goes practically from the experimental
equilibrium density, 21.83 nm−3, to a value slightly above the experimental freezing density,
25.97 nm−3 [16]. In table 1 we present the binding energies computed with the potentials
V2, V2ddd and V together with experimental data [17] or values obtained through an analytical

7
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Figure 1. Equations of state for the liquid phase obtained using the V2 (dotted line), V2ddd (dashed–
dotted line), and V (solid line) potentials. The circles represents experimental data from [17].

Table 2. Energies per atom in units of K associated with the damped ATM (Vddd ) and exchange
(VJ ) potentials at the given densities.

ρ (nm−3) Eddd E J

Liquid

21.86 0.121 ± 0.001 0.024 ± 0.002
23.20 0.140 ± 0.001 0.028 ± 0.002
24.01 0.152 ± 0.001 0.030 ± 0.002
24.83 0.167 ± 0.001 0.032 ± 0.002
25.36 0.175 ± 0.001 0.034 ± 0.002
26.23 0.191 ± 0.001 0.035 ± 0.003

Solid

29.34 0.255 ± 0.001 0.000 ± 0.002
30.11 0.273 ± 0.001 −0.002 ± 0.002
30.88 0.291 ± 0.001 −0.006 ± 0.002
31.50 0.305 ± 0.001 −0.011 ± 0.002
32.55 0.331 ± 0.001 −0.018 ± 0.002
33.54 0.356 ± 0.001 −0.029 ± 0.002
34.41 0.381 ± 0.001 −0.041 ± 0.002
35.27 0.403 ± 0.001 −0.050 ± 0.002

equation of state (EOS) fitted to the experimental data (Exp-EOS). Analytical equations of
state fitted to these results are compared with experimental binding energies [17] in figure 1.
As we can see, the theoretical results obtained with the inter-atomic potential V are in excellent
agreement with the experimental values at all densities. Although the results obtained in
calculations using the V2ddd potential are much closer to experiment than those where only
the two-body potential V2 is employed, still in most cases these results fail to be in agreement
with experiment. The EOS for the various potentials shows in a clear way how the results
evolve when Vddd and VJ are included in the interacting potential. The fitting parameters of the
EOS for all the potentials and the Exp-EOS are presented in table 3.

In the liquid phase the three-body potentials Vddd and VJ give positive contributions to
the total energy, as we can see in table 2. As we go from the lowest density to the highest
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Table 3. Fitting parameters for the equations of state in the liquid and solid phases, obtained
with results of the given potentials. Exp-EOS denotes the fitting parameters determined using
experimental binding energies. In the last line, for the liquid phase, we present published
experimental values of the given quantities.

Potential ρ0 (nm−3) E0 (K) A (K) B (K)

Liquid

V2 22.10 ± 0.13 −7.318 ± 0.004 13.5 ± 1.7 11.6 ± 4.3
V2ddd 21.87 ± 0.14 −7.196 ± 0.004 13.4 ± 1.8 10.6 ± 3.8
V 21.82 ± 0.14 −7.172 ± 0.004 13.3 ± 1.8 10.0 ± 3.8
Vpr3

a 21.80 ± 0.02 −7.178 ± 0.002
VHF3

a 21.68 ± 0.02 −7.124 ± 0.002
Exp-EOSb 21.820 ± 0.004 −7.1701 ± 0.0001 13.449 ± 0.086 7.82 ± 0.30
Exp. 21.834c −7.170d

Solid

V2 26.40 ± 0.08 −6.377 ± 0.011 26.8 ± 1.4 8.2 ± 2.0
V2ddd 26.14 ± 0.09 −6.187 ± 0.013 26.3 ± 1.4 8.1 ± 1.9
V 25.98 ± 0.10 −6.202 ± 0.014 24.2 ± 1.5 9.3 ± 1.8
Exp-EOSe 26.02 ± 0.70 −6.220 ± 0.097 25.6 ± 7.7 6.8 ± 7.3

a Reference [8].
b Fitting parameters using data of [17].
c Reference [16].
d Reference [17].
e Fitting parameters using data of [20].

density, the contribution associated with the damped ATM term to the binding energy goes
from approximately 2 to 3% of the modulus of EV , the binding energy computed using the
potential V . In a similar comparison, the contribution of the exchange term goes from about
0.3 to 0.5%. In particular, its contribution is about 18% of the triple–dipole dispersion energy
at our highest density. Despite the smallness of the energy associated with the exchange term
in the inter-atomic potential, its importance is remarkable. It just cannot be neglected if very
accurate results are needed [2].

In order to verify the importance of the phenomenological parameters A and δd in the
three-body inter-atomic potential, it is necessary to compare the results of this work with others
previously published in which different inter-atomic potentials were used. These results are
shown in table 4. All the inter-atomic potentials presented in table 4 used as the three-body part
of the interaction the potential of Cohen and Murrell [6], i.e. VJ and Vddd with parameter
values A = 1.0 and δd = 0, respectively. The two-body part used by the inter-atomic
potentials of table 4 are: for the potential V003, the two-body interaction proposed by Hurley and
Moldover [18]; for the potential VHF3, the two-body interaction proposed by Aziz et al [19];
finally, in the inter-atomic potential Vpr3, the two-body potential of (2) was used. Note that
the only difference between the potentials V and Vpr3 are the values of the phenomenological
parameters used.

We see from table 4 that a good agreement between theory and experiment was achieved
when we used the potentials Vpr3 and V003 to describe the equation of state in the liquid phase.
The potential VHF3 was incapable of reproducing the experimental binding energies of this
phase. Note that, although it was possible to reproduce the equation of state of the liquid phase
with the inter-atomic potentials Vpr3 and V003 (with these results the use of phenomenological
parameters in VJ and Vddd will not be justified), they fail when we try to describe the equation
of state in the solid phase, as we show in the next section.
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Figure 2. Equations of state for the solid phase determined using the V2 (dotted line), V2ddd
(dashed–dotted line), and V (solid line) potentials. The squares represent experimental data
from [20]. Due to the figure scale, in some regions the EOS obtained using the V2ddd and the
V potentials cannot be distinguished.

Table 4. Total energies per atom in units of K obtained in calculations using the V003, Vpr3 and
VHF3 potentials [8] at the given densities.

ρ (nm−3) E003 Epr3 EHF3

Liquid

21.86 −7.190 ± 0.008 −7.174 ± 0.008 −7.120 ± 0.008
23.20 — −7.128 ± 0.009 −7.062 ± 0.009
24.01 — −7.029 ± 0.009 −6.956 ± 0.009
24.83 −6.903 ± 0.010 −6.885 ± 0.010 −6.805 ± 0.010
25.33 — −6.780 ± 0.011 −6.694 ± 0.011
26.23 −6.551 ± 0.011 −6.532 ± 0.011 −6.437 ± 0.011

Solid

29.34 −5.748 ± 0.009 −5.725 ± 0.009 −5.625 ± 0.009
30.11 — −5.497 ± 0.009 −5.390 ± 0.009
31.50 −4.972 ± 0.009 −4.948 ± 0.009 −4.825 ± 0.009
32.88 — −4.231 ± 0.009 −4.085 ± 0.009
33.54 −3.854 ± 0.009 −3.830 ± 0.009 −3.675 ± 0.009
34.41 — −3.207 ± 0.010 −3.040 ± 0.010
35.27 −2.562 ± 0.010 −2.537 ± 0.010 −2.352 ± 0.010

5.2. Equation of state for the solid phase

The equations of state for the solid phase were investigated by employing the potentials V2,
V2ddd and V at eight densities. They lie in a range where accurate experimental data are
available. The lowest density that we have considered, 29.34 nm−3, is slightly higher than
the experimental [20] melting density, 28.57 nm−3. In figure 2 we compare the fitted equations
of state to results obtained with the three potentials to experimental binding energies [20].
The values from theory and experiment are displayed in table 1. As we may see, the EOS
determined using the inter-atomic potential V gives binding energies that are in excellent
agreement with the experimental data at all the densities. We can also see that at the high

10



J. Phys.: Condens. Matter 19 (2007) 116212 S Ujevic and S A Vitiello

end of the density range the energies computed with the potential V2ddd are too high. This is a
situation that the inclusion of the exchange potential VJ in the inter-atomic potential is able to
correct. The fitting parameters of the analytical equations of state for both theoretical results
and for the experimental data for the solid phase are presented in table 3.

In the solid phase the damped ATM interaction gives a positive contribution to the system
energy. The exchange term at the density 30.88 nm−3 and above certainly gives a negative
contribution to the total energy. Results associated with the ATM and exchange terms for this
phase are presented in table 2. As we go from the lowest density to the highest density, the
contribution of the ATM term to the total energy goes approximately from 4 to 15% of the
modulus of EV . At the beginning of the density range the exchange term practically does not
give any contribution to the total energy. At the end of this interval it lowers EV by about
2%. In more details, the three-body exchange energy at our highest density is attractive and its
modulus is about 12% of the dispersion energy. The contribution of both the triple–dipole and
the exchange potentials to the binding energy are more important in this phase.

As performed in the previous section, it is necessary to compare the results obtained in this
work for the solid phase with those obtained using the inter-atomic potentials of table 4. We see
from table 4 that none of the potentials that we previously used, Vpr3, V003 and VHF3, were able
to reproduce the equation of state of the solid phase. The differences that we found between the
experimental binding energies and the energies obtained with the potentials Vpr3 and V003 go
from ≈0, 050 K, at the lowest density studied, to ≈0, 130 K at the highest density studied. The
difference is still greater when we compare the results obtained with the potential VHF3. In this
case we found, going from the lowest density to the highest density, a difference of ≈0, 120 to
≈0, 320 K, respectively. In other words, the potentials Vpr3, V003 and VHF3 were incapable of
describing correctly and simultaneously the liquid and solid phases of helium atoms. It is the
potential V in (1), with the parameter values δd = 20.352 nm−1 and A = 4.0, that gives a good
description of the condensed phases of the helium atoms systems.

5.3. Equilibrium, melting and freezing densities

The value of the equilibrium density ρ0 calculated from the fits of equations of state to the
results determined using the potentials V2, V2ddd and V are presented in table 3. As we can
see, the equilibrium density evolves towards the experimental value as the potential in the
calculations is refined. The most important contribution from the three-body interactions to
this quantity comes from the damped ATM term. The equilibrium density determined with the
inter-atomic potential V , 21.82 ± 0.14 nm−3, is in excellent agreement with the experimental
value of 21.834 nm−3 and the value obtained from the Exp-EOS. We stress that, since all
of our results are correlated, the changes reported in ρ0 are significant, despite the statistical
fluctuations that each value may have.

The melting and freezing densities were calculated from the Maxwell double tangent
construction using the analytical equations of state for the liquid and solid phases. The
computed values for all the potentials that we have considered are presented in table 5. The
value of the freezing density computed using the V2ddd potential is worse than the one obtained
through the two-body potential V2. The freezing and melting density values determined using
the inter-atomic potential V put in evidence the importance of the exchange contribution to the
inter-atomic potential. These last results are the closest to the values from experiment. Note
that all potentials produce results that are in agreement with the experimental values. However,
since these quantities are computed using basically a single set of walkers, it is simple to follow
how they change as three-body terms are included in the interacting potential.

11
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Table 5. The melting, ρm , and freezing, ρ f , densities in nm−3 for the given potentials and
experiment. In the last two lines we present published experimental values.

Potential ρm ρ f

V2 29.07 ± 0.32 26.05 ± 0.32
V2ddd 29.04 ± 0.31 26.09 ± 0.31
V 28.93 ± 0.31 25.95 ± 0.31
Vpr3

a 28.98 ± 0.18 25.98 ± 0.18
VHF3

a 28.91 ± 0.22 25.90 ± 0.21
Exp-EOS 28.88 ± 0.43 26.02 ± 0.40
[16] — 25.970 ± 0.005
[20] 28.568 —

a Reference [8].

In tables 3 and 5 we show results for the equilibrium, freezing and melting densities
obtained with the potentials Vpr3 and VHF3. We see from this table that it is possible to employ
the inter-atomic potential Vpr3 to calculate the equilibrium, melting and freezing densities with
good results. This is not the case for the potential VHF3, which fails to describe the equilibrium
density. Since the results for the freezing and melting densities using the potentials V and Vpr3

are similar (see table 5), we can affirm that the equations of state are roughly equally displaced
from each other at the regions of high-density liquids and low-density solids when we include
our phenomenological parameters in V . Also, looking to the equilibrium density results of
table 3, we can conclude that the minimum of the equation of state is almost unaffected by the
inclusion of these parameters.

5.4. Pressure, isothermal compressibility and sound velocity

The pressure P

P(ρ) = ρ2

(
∂ E

∂ρ

)
, (17)

the isothermal compressibility

K (ρ) = 1

ρ

[
∂ρ

∂ P

]

T

, (18)

and the sound velocity

c(ρ) =
[

1

mKρ

]1/2

, (19)

have been computed in the liquid phase using results from all three Hamiltonians that we have
considered in this work. In table 6 we show the results for these three quantities evaluated
at the experimental equilibrium density. We have chosen to evaluate these quantities at the
experimental value of the equilibrium density in order to make clearer how the results evolve
with the different potentials.

The computed values of the pressure in table 6 are very sensitive to both the equilibrium
density ρ0 value and the curvature of the EOS. Evidence of this behaviour is the difference
of about 1 atm found between the results obtained with the V2 and V potentials. The damped
ATM term accounts for approximately 80% of the observed increase in the value of this quantity
towards zero, its true value. The remaining increase of 20% is due to the exchange term. This
is not a small amount and it appears despite the small contribution of this term in the binding
energy of the liquid phase.
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Table 6. Values for the pressure P (atm), isothermal compressibility K (atm−1) and sound velocity
c (m s−1) calculated with the given potentials at the experimental equilibrium density, 21.834 nm−3.
In the last line the isothermal compressibility was obtained through (19) using the experimental data
of [16].

Potential P K c

V2 −0.94 ± 0.19 0.0135 ± 0.0006 227.53 ± 0.76
V2ddd −0.12 ± 0.18 0.0127 ± 0.0005 234.39 ± 0.74
V 0.05 ± 0.18 0.0126 ± 0.0005 235.79 ± 0.74
Vpr3

a 0.11 ± 0.06 0.0126 ± 0.0002 235.86 ± 0.45
Exp-EOS 0.051 ± 0.017 0.01245 ± 0.000 08 236.81 ± 0.23
Exp — 0.0123 238.30b

a Reference [8].
b Reference [21].

The isothermal compressibility result obtained with the V potential is in excellent
agreement, within statistical fluctuations, with the experimental value and the value obtained
using the Exp-EOS. The damped ATM and exchange three-body interactions lower the
computed isothermal compressibility, improving agreement with experiment. Mainly because
of the ATM term, the computed value of this quantity decreases by about 7% when we compare
results obtained with the V2 and V potentials.

The sound velocity computed using the V potential and the Exp-EOS are in agreement.
However, neither of them agree with the accepted experimental value, 238.30 m s−1 [21]. It
seems that this quantity cannot be computed in a satisfactory way by considering the equations
of state together with (17)–(19).

We can see from table 6 that similar descriptions of the pressure, isothermal
compressibility and sound velocity can be achieved using the inter-atomic potentials V and
Vpr3. We can conclude, comparing both results, that the inclusion of the phenomenological
parameters in the three-body part on the inter-atomic potential V do not modify the concavity
of the liquid equation of state. The main roll of these parameters is to modulate the intensity of
the three-body contributions without altering the shape of the equation of state.

6. Final comments

In this work we have investigated in detail how small energy contributions from three-body
terms of the inter-atomic potential V modify many properties of a system of 4He atoms and
contribute to its total energy. We have computed the energies associated with the triple–dipole
and exchange potentials at several densities of the liquid and solid phases. These results have
confirmed [2] both that Vddd , the ATM term, is the dominant three-body interaction and that
the exchange component VJ cannot be neglected in the inter-atomic potential V .

The importance of the small exchange term VJ in the potential it is not limited to the
energy of the system. In the liquid phase, quantities like the isothermal compressibility and
the equilibrium density itself have their agreement with experiment enhanced as we include the
potentials Vddd and VJ in the interaction between the atoms. We can draw these conclusions
despite the fact that the values of the above quantities are computed with uncertainties much
larger than the observed change in their values. This is because we have performed the
calculations using the MW extension to the DMC method which correlates the results.

A more stringent test of how the three-body terms of the inter-atomic potential affect the
system might be obtained from the calculations of the melting and freezing densities which
depend on the description of the system in both the solid and liquid phases. Our results for
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these quantities in table 5 show evidence that the potential V is more than just a piling up of
three-body terms into the two-body potential V2. The freezing density steadily decreases to the
experimental value as the Vddd and the VJ are included. However, the melting density first gets
worse and then gets closer to the experimental value. It is the full inter-atomic potential V that
gives the most accurate description of the systems of helium atoms. Just part of it can be even
worse than the result of a simpler potential.

Although very good results can be obtained in the description of many properties of
systems of helium atoms using the inter-atomic potential V that includes the three-body terms
Vddd and VJ , some questions remain. First, the amplitude of VJ is four times larger than the
amplitude determined by ab initio calculations [6] for trimers. In this context is important
to mention that we were not able to reproduce the published values in [6] (we obtained only
close results) using the parameters given within the article. Although the differences found
between the published values and the obtained values are not huge, a doubt arises concerning
the precision of the parameters in [6]. However, these differences do not justify the great
increase (from 1.0 to 4.0) of our phenomenological parameter A in VJ . Second, the multi-polar
non-additive third-order contributions to the dispersion energy are assumed to cancel the fourth-
and higher-order dipole interaction terms. This is true, most probably, only approximately. In
other words, we have an inter-atomic potential that is able to give a very good description of the
systems of helium atoms in the condensed phases. However, a reasonable understanding of its
three-body and high-order contributions is still lacking. We hope that our work will contribute
to prompting further efforts to clarify these issues.
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Appendix A. Parameters of the V2 potential and its retardation function φR

Table A.1. Parameter values of the V2 potential, Korona et al [9].

Parameter Value Parameter Value (au)

A 2074 364.26 K C8 14.117 855
α 1.886 482 51 bohr−1 C10 183.691 25
β −0.062 001 3490 bohr−2 C12 3265
δ 1.948 612 95 bohr−1 C14 76 440
C6 1.460 9778 (au) C16 2275 000

Table A.2. Retardation function φR(r) of the V2 potential, [3].

Range (bohr) φR(r)

0 � r < 5.7 1
5.7 � r < 10 p1 + p2r + p3r2 + p4r3

10 � r < 102 1 − p1 − p2r0.5 − p3r − p4r1.5 − p5r2

102 � r < 2 × 102 (1 + p1 + p2r0.5 + p3r + p4r2)/(1.2 + 0.8 p5r)
2 × 102 � r < 103 ln(r(p1r0.4 + p2r0.5 + p3r0.6 + p4r0.7 + p5r0.8))

103 � r < 104 p1 + p2r−1 + p3r−2 + p4r−3 + p5r−4

104 � r < 105 p1 + p2r−1 + p3r−2 + p4r−3 + p5r−4
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Table A.3. Parameter values for the retardation functions φR(r), [3].

Range (bohr) p1 (au) p2 (au) p3 (au)

5.7 � r < 10 9.860 029 × 10−1 5.942 027 × 10−3 −7.924 833 × 10−4

10 � r < 102 −1.623 43 × 10−3 2.220 97 × 10−3 −1.173 23 × 10−3

102 � r < 2 × 102 8.825 06 × 10−2 3.818 46 × 10−2 −1.724 21 × 10−3

2 × 102 � r < 103 1.488 897 −2.123 572 1.043 994
103 � r < 104 6.184 108 × 10−6 3.283 043 × 102 1.367 922 × 103

104 � r < 105 −1.107 002 × 10−7 3.284 717 × 102 −9.819 846 × 102

Range (bohr) p4 (au) p5 (au)

5.7 � r < 10 3.172 548 × 10−5 —
10 � r < 102 3.000 12 × 10−4 −1.055 12 × 10−5

102 � r < 2 × 102 4.748 97 × 10−7 3.044 5706 × 10−3

2 × 102 � r < 103 −1.898 459 × 10−1 6.479 867 × 10−3

103 � r < 104 −4.464 489 × 107 1.365 003 × 1010

104 � r < 105 −1.953 816 × 107 −1.079 712 × 1011

Appendix B. Parameters of the exchange potential VJ

Table B.1. Parameter values for the exchange potential [6].

Parametera Value Parameter Value

α 3.446 Å
−1

c7 −1726.015
c0 −1957.895 c8 177.661
c1 673.186 c9 2693.277
c2 −188.491 c10 −1096.591
c3 3664.836 c11 154.063
c4 −1655.476 c12 6011.520
c5 244.090 c13 −2618.297
c6 4129.947 c14 296.384

a The parameters ci are in the appropriate units, i.e. c0 = eVh , c1 = eVh Å
−1

, etc; 1eVh =
0.036726Eh .
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